Mechanical fatigue in repetitively stretched single molecules of titin.
نویسندگان
چکیده
Relaxed striated muscle cells exhibit mechanical fatigue when exposed to repeated stretch and release cycles. To understand the molecular basis of such mechanical fatigue, single molecules of the giant filamentous protein titin, which is the main determinant of sarcomeric elasticity, were repetitively stretched and released while their force response was characterized with optical tweezers. During repeated stretch-release cycles titin becomes mechanically worn out in a process we call molecular fatigue. The process is characterized by a progressive shift of the stretch-force curve toward increasing end-to-end lengths, indicating that repeated mechanical cycles increase titin's effective contour length. Molecular fatigue occurs only in a restricted force range (0-25 pN) during the initial part of the stretch half-cycle, whereas the rest of the force response is repeated from one mechanical cycle to the other. Protein-folding models fail to explain molecular fatigue on the basis of an incomplete refolding of titin's globular domains. Rather, the process apparently derives from the formation of labile nonspecific bonds cross-linking various sites along a pre-unfolded titin segment. Because titin's molecular fatigue occurs in a physiologically relevant force range, the process may play an important role in dynamically adjusting muscle's response to the recent history of mechanical perturbations.
منابع مشابه
Reversible unfolding of individual titin immunoglobulin domains by AFM.
Single-molecule atomic force microscopy (AFM) was used to investigate the mechanical properties of titin, the giant sarcomeric protein of striated muscle. Individual titin molecules were repeatedly stretched, and the applied force was recorded as a function of the elongation. At large extensions, the restoring force exhibited a sawtoothlike pattern, with a periodicity that varied between 25 and...
متن کاملSilicon Nitride Cantilevers for Muscle Sarcomere Force Measurements
Titin is a giant structural protein in muscle that spans the half sarcomere from the z-band to the M-line in skeletal muscle. Although much is known about titin’s mechanical properties from tests on isolated molecules [1] or fragments of titin produced recombinantly, there is little information on its behavior within the structural confines of a sarcomere. Since the passive properties of single...
متن کاملMechanical unfolding of ubiquitin molecules.
Mechanical stretching of ubiquitin and of its several repeats are studied through molecular-dynamics simulations. A Go-type model [H. Abe and N. Go, Biopolymers 20, 1013 (1981)] with a realistic contact map and with Lennard-Jones contact interactions is used. The model qualitatively reproduces the experimentally observed differences between force-extension patterns obtained on polyubiquitins st...
متن کاملTitin and the sarcomere symmetry paradox.
Titin is thought to play a major role in myofibril assembly, elasticity and stability. A single molecule spans half the sarcomere and makes interactions with both a thick filament and the Z-line. In the unit cell structure of each half sarcomere there is one thick filament with 3-fold symmetry and two thin filaments with approximately 2-fold symmetry. The minimum number of titin molecules that ...
متن کاملManipulation of single molecules in biology.
The mechanical manipulation of single biological molecules is stimulating new and exciting research in many fields of study, including molecular motor mechanics, biopolymer properties, protein unfolding, receptor-ligand interactions, and more. Some recent highlights include the elucidation of the coupling ratios of myosin and kinesin, the demonstration of oscillatory forces in dynein arms, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 80 2 شماره
صفحات -
تاریخ انتشار 2001